Планирование процессов. Задачи алгоритмов планирования

Когда компьютер работает в многозадачном режиме, на нем могут быть активны­ми несколько процессов, пытающихся одновременно получить доступ к процессору. Эта ситуация возникает при наличии двух и более процессов в состоянии готовности. Если доступен только один процессор, необходимо выбирать между процессами. Отвечающая за это часть операционной системы называется планировщиком, а используемый алгоритм — алгоритмом планирования.

Планирование
- это разделение вычислительных ресурсов системы между процессами и потоками.

Практически все процессы чередуют периоды вычислений с операциями (дисковыми) ввода-вывода. Обычно процессор некоторое время работает без остановки, затем происходит системный вызов на чтение из файла или запись в файл. После выполнения системного вызова процессор опять считает, пока ему не понадобятся новые данные или не потребуется записать полученные
данные и т. д.

Ключевым вопросом планирования является выбор момента принятия решений. Оказывается, существует множество ситуаций, в которых необходимо планирование.

  1. Во-первых, когда создается новый процесс, необходимо решить, какой процесс запустить: родительский или дочерний. Поскольку оба процесса находятся в состоянии готовности, эта ситуация не выходит за рамки обычного и планировщик может запустить любой из двух процессов.
  2. Во-вторых, планирование необходимо, когда процесс завершает работу. Этот процесс уже не существует, следовательно, необходимо из набора готовых процессов выбрать и запустить следующий. Если процессов, находящихся в состоянии готовности, нет, обычно запускается холостой процесс, поставляемый системой.
  3. В-третьих, когда процесс блокируется на операции ввода-вывода, семафоре, или по какой-либо другой причине, необходимо выбрать и запустить другой процесс.

Иногда причина блокировки может повлиять на выбор. Например, если А важный процесс и он ожидает выхода процесса В из критической области, можно запустить следующим процесс В, чтобы он вышел из критической области и позволил процессу A продолжать работу.
Сложность, однако, в том, что планировщик обычно не обладает информацией, необходимой для принятия правильного решения.

4) В-четвертых, необходимость планирования может возникнуть при появлении прерывания ввода-вывода. Если прерывание пришло от устройства ввода-вывода, закончившего работу, можно запустить процесс, который был блокирован в ожидании этого события. Планировщик должен выбрать, какой процесс запустить: новый, тот, который был остановлен прерыванием, или какой-то другой.

В различных средах требуются различные алгоритмы планирования
.
Это связано с тем, что различные операционные системы и различные приложения ориентированы на разные задачи. Другими словами, то, для чего следует оптимизировать планировщик, различно в разных системах. Можно выделить три среды:

  • 1. Системы пакетной обработки данных.
  • 2. Интерактивные системы.
  • 3. Системы реального времени.


В системах пакетной обработки
нет пользователей, сидящих за терминалами и ожидающих ответа. В таких системах приемлемы алгоритмы без переключений или с переключениями, но с большим временем, отводимым каждому процессу. Такой метод уменьшает количество переключений между процессами и улучшает эффективность.

В интерактивных системах необходимы алгоритмы планирования с переключениями, чтобы предотвратить захват процессора одним процессом. Даже если ни один процесс не захватывает процессор на неопределенно долгий срок намеренно, из-за ошибки в программе один процесс может заблокировать остальные. Для исключения подобных ситуаций используется планирование с переключениями.

В системах с ограничениями реального времени
приоритетность, как это ни стран­но, не всегда обязательна, поскольку процессы знают, что их время ограничено, и бы­стро выполняют работу, а затем блокируются. Отличие от интерактивных систем в том, что в системах реального времени работают только программы, предназна­ченные для содействия конкретным приложениям. Интерактивные системы явля­ются универсальными системами. В них могут работать произвольные программы, не сотрудничающие друг с другом и даже враждебные по отношению друг к другу.
то есть подразумевается, что система реального времени ориентированна не на быстрый отклик на запрос пользователя, или какого либо произвольного приложения , а на получения вполне конкретных результатов к определённому моменту времени.

Задачи алгоритмов планирования.

Чтобы разработать алгоритм планирования, необходимо иметь представление о том, что должен делать хороший алгоритм. Некоторые задачи зависят от среды (системы пакетной обработки, интерактивные или реального времени), но есть задачи, одинаковые во всех системах.

Список задач

представлен ниже .

# Для всех типов систем=

  1. Справедливость - предоставление каждому процессу справедливой доли процессорного времени.
  2. Принудительное применение политики - контроль за выполнением принятой политики.
  3. Баланс - поддержка занятости всех частей системы.

# Для систем пакетной обработки данных=

  1. Пропускная способность - максимальное количество задач в час
  2. Оборотное время - минимизация времени, затрачиваемого на ожидание, обслуживание и обработку задачи.
  3. Использование процессора - поддержка постоянной занятости процессора

# Для интерактивных систем=

  1. Время отклика - быстрая реакция на запросы
  2. Соразмерность - выполнение пожеланий пользователя

# Для систем реального времени=

  1. Окончание работы к сроку - предотвращение потери данных
  2. Предсказуемость - предотвращение деградации качества в мультимедийных системах