§25.3 Размерность тензорного произведения $R \otimes R.$

Докажем, что $ R \otimes R$ - конечномерно пространство размерности $ n^2,$ где $n$ - размерность $ R.$

Зададим базис $e_1, ..., e_n$ в пространстве $R.$ Пусть $x, y$-произвольные векторы из $R;$ разложим их по векторам базиса:

$$ x = \xi_1 e_1 + ... + \xi_n e_n, y = \eta_1 e_1 + ... + \eta_n e_n.$$
Тогда
$$ x \otimes y = \sum_{i, j=1}^n \xi_i \eta_i (e_i, \otimes e_j).$$

Таким образом, $ x \otimes y$, а значит, и любой другой вектор из $ R \otimes R$ является линейной комбинацией $ n^2$ векторов $ e_i \otimes e_j.$

iptables Основные команды. Шпаргалка

Основные понятия iptables

  • Цепочки -- независимые списки правил (действий обработки пакетов).
  • Таблицы -- независимые группы цепочек.

Формат команды iptables

iptables -t таблица действие цепочка дополнительные_параметры

Основные действия:

§25.2 Связь между билинейными формами в пространстве R и линейными функция и в $ R \otimes R.$

Покажем теперь, как по билинейной форме на $R$ можно построить линейную функцию на тензорном произведении $ R \otimes R.$ Пусть задана билинейная форма $ f (x, y)$ на $ R.$ Сопоставим ей линейную функцию $ F(X)$ на $ R \otimes R.$ Для элементов $ X = x \otimes y$ положим
$$ F(x \otimes y) = f(x, y);$$
для произвольного $ X = x_1 \otimes y_1 + ... + x_k \otimes y_k$ полагаем
$$ F(X) = f (x_1, y_1) + ... + f(x_k, y_k).$$

§25.1 Тензорное произведение $R \otimes R$

В первой главе мы изучилали билинейные функции в аффинном пространстве $R.$ Здесь мы покажем, что билинейные функции можно трактовать и как линейные функции в некотором новом пространстве. Это пространство, играющее очень важную роль, называется тензорном произведением $R$ и $R$ (по-другому, тензорном квадратом $R$) и обозначается $ R \otimes R$ или $ \otimes^2 R.$ Дадим его определение.

SQL

Конструктор по умолчанию и вывод мнимой части числа

class MathComplex2      // Котеров 432
 {   public $re, $im;     
  // Инициализация нового объекта     
function __construct($re=0, $im=0)     
  {       
  $this->re = $re;       
  $this->im = $im;    
  }     
 // Добавляет к текущему комплексному числу другое     
 function add(MathComplex2 $x)     
   { 
     $this->re += $x->re; 
     $this->im += $x->im;
   } 
 // Преобразует число в строку (например, для вывода)     
   function __toString()     
   {       
     return "({$this->re}, {$this->im})";     
   }   
}

Лекции по PHP

██████╗░██╗░░██╗██████╗░
██╔══██╗██║░░██║██╔══██╗
██████╔╝███████║██████╔╝
██╔═══╝░██╔══██║██╔═══╝░
██║░░░░░██║░░██║██║░░░░░
╚═╝░░░░░╚═╝░░╚═╝╚═╝░░░░░


Что такое классы в ОПП ?

Лекции по PHP

-------------------------------------------------НА FKN.---------------------------
Авторы:VEDRO-COMPOTA, AlF TUNER и FGH.

Обращение к свойству класса которое не объявили
Псевдопеременная $this

Что такое классы? Классы - это тип данных. Именно тип данных. Например, в паскале, есть встроенный тип данных - integer. Мы можем дать переменной a тип integer.

openserver mysql Какой пароль, как подключиться в командной строке

Forums:

Используйте пароль root, предварительно введя в консоль опенсервера команду аналогичную обычной командной строке:

mysql -u root -p

Также см.:

Pages

Subscribe to fkn+antitotal RSS