Пример недопустимого способа разбиения на классы

На стр. 19 (Элементы теории множеств глава 1) предлагается в качестве "плохого" примера разбиения не классы такой вариант -
в один класс относим только те точки плоскости, если расстояние между ними меньше 1.

Примечания, пояснения и комментарии - Элементы теории функций и функционального анализа - А. Н. Колмогоров, С. В. Фомин

Здесь соберу некоторые заметки по тексту книги - может они будут полезны тем, кто вздумает учить функциональный анализ -
В частности, буду указывать страницы которые комментирую - по книге 1976-ого года издания (Издательноство "НАУКА" главная редакция физико-математической литературы. Москва)

Разбиение на классы - что это такое

Разбиение на классы

Разбиение множества М на классы - предствавление его (тем или иным способом) в виде суммы непересекающихся множеств.

[!] "Доля природных ресурсов" в ВВП и Бюджете России - статистика, схемы, диаграммы, проценты (%)

Вообще это ("нефтяная игла")))) довольно популярный вопрос, и он часто обсуждается в споре - чтобы немного "просветиться" в этой области создаю данную тему, в которой можно собрать данные о доле доходов от нефти и газа и других природных ресурсов в России в разные годы.

При случае также будем размещать схемы и "прочее".

Сопряжённое пространство - определение

Сопряжённое пространство $E^*$ - это совокупность (множество) всех непрерывных линейных функционалов, определённых на некотором линейном топологическом пространстве $E$. Эта совокупность образует линейное пространство.

Это пространство $E^*$ как раз и называется пространством, сопряжённым с $E$

Сильная тология - норма линейного функционала при "сильной топологии" в пространстве сопряжённом к данному

Топология в $\Large E^*$ (пространство линейных функционалов, заданных в пространстве Е) называется "сильной", если она порождается нормой функционала вида:
$\Large ||f|| = \sideset{}{}{sup}_{x \neq 0} { |f(x)| \over{||x||}} $
(подразумевается, что служащее для функционалов областью определения пространство Е также нормировано)

Пространство E* называется сопряжённым c пространством E.

52 онлайн-встреча IFF - 21 сенятбря 20-20

Друзья, 52-я онлайн-встреча IFF состоит 21-ого сенятбря 20-20 (мск).

Тема доклада: "Наследование классов в Java. Тонкости и особенности"

Как подлючиться: http://fkn.ktu10.com/?q=node/6129

Полнократное Число (powerful number)

Полнократное число - такое число, которое делится нацело квадратом каждого своего прострого делителя.

Вот начало ряда таких чисел:

1, 4, 8, 9, 16, 25, 27, 32, 36, ...

Pages

Subscribe to fkn+antitotal RSS